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Resonant oscillations in shallow water 
with small mean-square disturbances 

By J. G. B. BYATT-SMITH 
Department of Mathematics, University of Edinburgh, James Clerk Maxwell Building, 

Mayfield Road, Edinburgh EH9 352, UK 

(Received 7 October 1987) 

The ordinary differential equation s2y + s2&j = y2 - cos t - 1 - c, which represents 
forced water waves on shallow water near resonance is considered when the 
dispersion s and the constant c are small. Asymptotic and numerical methods 
are used to show that solutions which are bounded for all finite t can exist only if 
c > - 2-% x 1.4664 . . . . 

1. Introduction 
The study of the problem of resonant sloshing of water in a horizontally oscillated 

container of finite depth was initiated by Chester (1968). He derived the integral 
equation 

a,+cost = (f(t)-a2)'-a, ( f ( t - 7 ) - f ( t ) )  In tanh(a,171) d7-a5 f(t--)&d7, 

(1.1) 
I:m r 

for the periodic response near one of the resonant frequences. For our purpose, it is 
sufficient to  say that the ai are constants and the function f ( t )  has period 2x and 
zero mean. For further details see Chester (1968). In  the case of shallow water and 
in the absence of damping Ockendon & Ockendon (1973), Cox & Mortell (1983) and 
Miles (1985) have shown that this reduces to a second-order differential equation : 

2 
i k 2 ( j + f ) - h j - $ f 2 + + s c  cost = constant. (1.2) 

Ockendon, Ockendon & Johnson (1986) also consider a more tractable model for 
damping and introduce a term proportional to f to the left-hand side of (1.2). The 
condition tha t fhas  zero mean over the interval (-n, x)  means that the constant on 
the right-hand side of (1.2) is equal to 

I n  (1.2), k of order one represents the 'Korteweg-de Vries' scalings where the 
nonlinearity of the resonant response is of the same order of magnitude as the 
dispersive effects. Ockendon et al. (1986) considered the case of small k which occurs 
when the water depth h tends to zero. It is convenient in this case to write 
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so that, when damping is included, 

€ 2 g + E 2 S y  = y2-COSt-l-CC, (1.4) 

where = 2 - r 3 - z x z ~ ,  (1.5) 
1 3 1  

and 6 is a constant. 
Then the detuning parameter A and the constant c are given by 

and Y2dt-1. 
c = --r 1 

2x -n 

Ockendon et al. (1986) show that there are multiple solutions for equation (1.4) and 
discuss the Acharacter of the solutions. They also obtain the form of the response 
diagrams c(h)  for the case c not small. For fixed values of E and S there are a finite 
number of solutions. In  the case of zero damping these are labelled (n, 1) and (n, 0). 
The notation (i, j) indicates the number of 'spikes ' in the solution y(t) corresponding 
to rapid oscillations on a timescale of order (s-'t), with i being the number of spikes 
a t  t = 0 a n d j  the number a t  t = x. Ockendon et al. (1986) present numerical evidence 
that the branches labelled (n, 0 )  and (n, 1) in the response diagram are in fact 
connected, the spike at t = x continuously diminishing in size as c passes through the 
minimum value c = c,. No analysis of this is given, however. The principal aim of this 
paper is to analyse this behaviour by means of constructions of an asymptotic 
solution to (1.4) as s+O. It is shown that c = O ( E ~ )  in order to obtain the transition 
from the (n, 0) solution to the (n, 1) solution. 

In  $ 2  we find the appropriate form of approximate solution in the form of a 
perturbation series. We show that two approximations are required, one valid 
throughout the interval (-x, x), apart from a small region near the end points, and 
an inner solution valid for values o f t  near fn. This requires the solution of the 
differential equation 

where T is a scaled time variable. This equation has been solved numerically by 
Byatt-Smith (1988). In  the final section we discuss the result and compare the 
solutions with those of Ockendon et al. (1986). 

2. The construction of a 2n-periodic solution 

We wish to study the behaviour of the solutions of the equation 

2.1. The form of an approximate solution 

E 2 g +  S E 2 g  = y2- cos t - 1 -c, (2.1) 
where 6 2 0, 0 < E 4 1 and IcI is small, that is o(1) as s+O. In particular, we 
seek initial conditions y(0) and Q(0) which give rise to a periodic solution with 

With c small, a solution of the form y = f (1 + cost): = f 1/2lcos$tl is clearly 
invalid near t = + x ,  where derivatives become large. If e2y and y2 are to be of 
comparable order then this suggests that timescales of order O ( E - ~ )  are going to be 
important. Hence we look for a solution of the form 

y(2x + t )  = y(t). 

y = Y(7, t) ,  (2.2) 

where 7 = f(t)/E. (2.3) 
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Here f ( t )  is a t  our disposal and the aim, following the ideas of Kusmak (1959) is to 
choose f so that the first approximation to Y satisfies an equation whose solution is 
periodic in 7 with period independent of t .  

d a f ’ a  Then 
-= -+---, 
dt at c 

and 

so that f’2Y77 + c { f ” q  + 2f’YTt + Sf ’Y,} + e2{ K t  + SV,} = Y 2  - cos t - 1 - c. 

We now seek a series solution of (2.6) of the form 

00 

Y = ceq. 
0 

The coefficients of the powers of e then yield 

€0:  f’2Y O7r = y;-1-cost. 

Using the criterion outlined above we choose 

f’ = .\/2( 1 +cost): = 29 lcos&lh, 

Yo = (1 + cos tpx,, 
2XOT7 = xi - 1, 

so that if 

X, will satisfy 

or Xi7 = $Xi -Xo  + constant. 

If (2.11) is regarded as an ordinary differential equation, the solutions X , ( T ,  a, 4) 
are periodic and have as constants of integration the amplitude a and phase 4. The 
period 7, of these solutions depends only on a and lies between 2x, the period for 
small oscillations about X ,  = - 1, and infinity when the ‘amplitude’ is 3 and the 
solution for X ,  is a solitary wave, 1-3 sech2 ( + ( T + $ ) ) .  The period tends to  infinity 
because of the asymptotic approach along the homoclinic orbit to the unstable 
equilibrium point X ,  = 1 .  This means that the two-time approach breaks down as 
the effective fast timescale becomes longer. However a uniformly valid solution can 
still be constructed, a t  least for t not close to fx. This is the n-spike solution 
discussed by Ockendon et al. (1986) where Yo remains close to + d2lcos$tl over most 
of the t interval, (t  not close to + x )  but additionally has n ‘spikes’ near t = 0. 

I n  addition to its failure near the homoclinic orbit the two-time approach can also 
break down at  points where f’(t) equals zero, that is a t  t = + x  modulo 2x. I n  this 
instance it is actually a breakdown of the Kusmak criterion for choosing f ( t ) .  This 
arises because the effective potential changes from (2.121, which has locally quadratic 
behaviour a t  the minimum X ,  = 1, to  one with a stationary point with locally cubic 
behaviour. Thus with a different local choice off(t) and a different choice of local 
scaling of Yo, we require a solution of 

Xi, = $ X i  + constant (2.13) 

to find the behaviour of Yo. 
The solutions of this equation are no longer periodic and all blow up in finite time 

except the trivial solution X ,  = 0. Again the asymptotic approach to this solution as 
t --f f x implies that the two-time approach has broken down. 
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coefficient of e and assuming c = o(e) gives 
We now return to the expansion of (2.6). The next equation comes from the 

f’2Y,TT-2Yo Y, = -{f“YoT+2f‘YoT,+Sf’Yo,}. (2.14) 

Since Yo, satisfies the homogeneous part of (2.4) we may write 

- y 1 { f ’ 2 Y o T 7 T - 2 Y 0  Y o T { f ’ 2 Y I T T - 2 Y o  ‘1) [ f ’ 2 ( Y o T  ‘17- ‘1 YoT,)}T = ooTG( t>  ’), 
(2.15) 

where G(t, 7 )  is the right-hand side of (2.14). The condition that Yl is periodic in T 

requires that Yo, is orthogonal to G(t, T )  over a complete period. Thus 

so that 
fG{f’Y& a est} d7 = 0. 

(2.16) 

(2.17) 

This may be integrated with respect to t to give 

eat {f’ f Yi,  d7) = constant. (2.18) 

The termf’f Y &  d7 is actually independent of the scaling functions f and represents 
the action. The interpretation of (2.18) is thus that the action is an exponentially 
decreasing function of time if 6 > 0 or constant if S = 0. The orbit followed by the 
slowly varying solution in the (Yo, Yo,) phase plane comprises an approximate closed 
loop lying within the homoclinic orbit. The area of this loop is f Y &  d7 which, by 
(2.18), increases slowly as f’ decreases, whereas by (2.10) the size of the homoclinic 
orbit clearly decreases as 1 +cost = 2-if‘ decreases. Thus the case where the action 
is of order one must be the n-spike solution, where (2.18) breaks down because the 
closed loop in the (Yo, Yo,) phase plane tends to the homoclinic orbit before (tl reaches 
IT. Similarly if the oscillations are to extend to t = *IT then the action must be zero 
or at least o(1) as e+O. This argument suggests that  in this case the appropriate 
solution is one of small amplitude about the equilibrium, which must still break down 
a t  t++n, where the two-time approach fails. We shall also require a theory for the 
‘inner’ solution valid near t = +IT. The problem of finding a periodic solution to (2.1) 
thus divides itself into two phases. There is an outer solution valid in -IT < t < IT. 

This must be connected by an inner solution, valid near t = -IT( = IT mod  IT). We 
shall also indicate how to construct a uniformly valid solution for the n-spike solution 
which requires a third solution connecting the inner and outer solution since the 
inner solution does not extend to t = *IT. 

2.2. The outer solution 
We now look for a series solution of (2.6) but assume that each term is expanded 
as 

where Y!, the equilibrium position, is a function of t only and p is a number to be 
determined. We shall find in the following section that the critical size of c is O($) and 
write for convenience c = 2 - i ~ ~ ; .  This will of course mean that additional terms will 
be required in the full expansion for Y .  These are ignored for the present as they do 
not affect the leading terms. 

yi = Y:+epY:+€2PY;+. . . ,  (2.19) 
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Hence we write the full expansion as 

(2.20) 

When this is introduced into (2.6), we obtain 

€Pf12 Y ~ 7 7 + € 2 P f ’ 2 Y ~ r , + € 3 p f ’ 2 Y ~ 7 7 + € ~ + l { f N  Yi7+2f’ Y;t,+6f’Y;,+f’2Y;77 

= Y;2+2€2’Y: Y;+€2p(2Y; Y;+ Y;2)+2€p+lY;Y;-l-cost-2-Iy€4... .  (2.21) 

The EO term simply gives the equilibrium solution 

Y:z = 1 +cost = 2 cos2$, (2.22) 

or Y: = f q 2  cos$ (--7c < t < 7c). (2.23) 

The e p  term gives 
f’2Yi7,-2Y; Y;  = 0, (2.24) 

and the criterion for choosing f outlined in the previous section requires that the 
solution for Y ;  is periodic in r with period independent oft .  Hence we choose 

f’ = 1/21y:p = 2r C0S”t 2 ’  
3 1  

(2.25) 

This integrates to give 
f(t) = 2 2 1 z  costit d t ,  (2.26) 

the constant of integration being absorbed into r. Following the discussions at the 
end of $2.1 if we now take the negative sign in (2.23), (2.24) may be written as 

Yi,,+ Y ;  = 0, 

with solution Yi = Ai(t) cos (r+q5(t)) Ai(t) C O S ~ .  

(2.27) 

(2.28) 

The functional dependence of At and $ now follows the usual method of slowly 
varying amplitude and phase. The equation for At is determined by the analogue of 
(2.15) which comes from the eP+l terms in (2.21). There is normally a second condition 
that determines q5. However, when using Kusmak’s method this slow variation can 
always be incorporated by a suitable expansion off and, a t  this order, it  suffices to 
take q5 to be constant. Thus the ep+l terms give 

I Y:/ ( Y;,, + Y:) = - {f” Yi,  + 2f’ Yit, + Sf’ Yi,} 

= + {f”Ai  + 2f ’A& + 6Aif’) sin 8. (2.29) 

The resonance condition requires that the coefficient of sin 8 is zero so that 

A; = 2 - g ~  e+t/z C0s- i  it, 
where G is a constant. 

Thus the first approximation gives 

(2.30) 

(2.31) 

We anticipate the results of $2.4 (see (2.48)) which requires that p = and look a t  
the solution near --7c by writing t = -n+2tc$T. Then 

(2.32) 
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and the solution for y becomes 

and similarly, near t = rc with t = n + 28~0T with T < 0, we obtain 

and 

(2.33) 

(2.34) 

(2.35) 

where 
I = 2 i I T  cost df;. (2.36) 

dt this also represents the total change of phase 
in the outer solution. If n is the nearest integer to Il(2xe) then n represents the 
number of complete cycles or spikes in the outer solution. 

Since I / €  equals the integral 

2.3. The inner solution 

The outer solution breaks down for two reasons. First, as t + f n  the ratio of 
successive terms in the expansion of Yo in powers of EP becomes large. Second the 
derivatives of Y! with respect to  t become large so that we anticipate that y is 
becoming large. 

Since Y: is zero a t  t = -n we introduce scaled variables 

2 = E - Q ~ ,  T = ( t+n)  EC. (2.37) 

Then we may rewrite (2.1) as 

&2+q-2r {x” + wX’) = E 2 g 2 2  - ;P ~2 - c + 0 ( € 4 7 ) .  (2.38) 

The leading terms from 9, y2 and cost+ 1 ,  are of the same order if 

2+q-2r = 2q = 2r or q = r = 2 3‘ (2.39) 

This is a consistent scaling if c is of order ei or smaller. If c is larger, say of order 
E” with n < 4, then the leading term from 1 + cost is of smaller order and we must 

q = i n ,  r = 1-in (2.40) 
choose 

In  this case the behaviour of the inner solution is governed by the ordinary 

4 (> 8) .  

differential equation 
X ” + S € ~ X ’  = xZ-c*, (2.41) 

where c* is c / e n .  
This equation represents damped cnoidal waves or periodic waves if S = 0. If this is 

to be properly matched with the outer solution then the neglected terms in the 
expansion of (2.20) which involve c must be included. These appear in the expansion 
off to modify the choice off’ so that it has a small but positive minimum. An 
alternative explanation is that one has to reconstruct the expansion of Yo = f (1 -t cos 
t + c): in order to obtain a uniformly valid expansion. We do not discuss these details 
here as we merely obtain the results of Ockendon et al. (1986) in the limit of small but 
order-one values of c. 

Hence the most general case of interest is c of order €4. For convenience we 
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introduce y = 29c~-% and with q = r = 2 we modify (2 .37)  and write the scaled 
variables as 

x = 2 ~ ~ - 3 y ,  T = 2 - 4 s f ( t + x ) .  (2 .42)  
1 e  

If we expand x in a power series 

x = X , + € g x , +  ...) (2 .43)  

then the first-order inner problem from, (2 .1)  is 

X:  = x ; - T 2 - y .  (2 .44)  

In order to match to the outer solution, we require the asymptotic form of this 
equation valid as T 4 + 03. Assuming the existence of solutions of (2 .44)  that remain 
bounded for all finite T ,  the leading term is + T  as T + T o o .  Noting that large 
positive T implies t tends to -n, in order to match with (2 .33)  we require the minus 
sign and there are two types of asymptotic behaviour, a t  least for y + 0. The first we 

Y Y2 (2 .45)  
may write as 

2T 8T3 ''.' 

The right-hand side being a series in powers of T - l .  The second type of asymptotic 
form has oscillatory behaviour about Zo(T)  with an algebraic decay that is slower 
than (2 .45) .  The leading terms are 

X ,  = z0(T)  N -T----+ 

- - T + G  A c o s ( y T : + $ + ) .  
Tx XO 

Similarly as T + - 00 we have 

(2 .46)  

(2 .47)  

2 .4 .  Matching and the connection problem for the periodic solution 

We now look in detail a t  the matching required to produce a 2n-periodic solution of 
(2 .1 ) .  Comparing (2 .46)  and (2 .33)  we see that an outer solution of the form (2 .31)  
matches an inner solution of (2 .44)  near t = -n if 

S i d y ( T )  = xo(T),  (2 .48)  

where x,(T) satisfies (2 .46) .  This requires, as we have already stated, p = Q and that 
the following conditions are satisfied : 

A + -  - C en8/2 9 9, =$-  (2 .49)  

As t + n  from below, y satisfies the asymptotic form (2 .35)  and since y is periodic 
this is also the asymptotic form of the outer solution for t + - n  from below. Hence 
comparing (2 .35)  and (2 .47 )  we obtain two further conditions: 

A-  = C e-"$I2, 2nn - q5- = I / €  + $. 

We may combine (2 .49)  and (2 .50 )  to give 

(2 .50)  

A+ = A- ex$, I / E  = 2nn-A$,  (2 .51)  

where Aq5 = q5+ + q5-. (2.52) 

The two conditions of (2 .51)  define a connection problem which must be satisfied 
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if the solution xo of (2.44) is to give a 2n-periodic solution of (2.3). This problem may 
be reformulated in the following way. Suppose xo is the solution of (2.44) with 
asymptotic forms (2.46) and (2.47) as T - t k  co and suppose also that xo(0) = a and 
i O ( O )  = p. Then for T > 0 we write xo(T)  = x+(T) and for T < 0 we write xo( - T )  
= +x-(T).  Then x+ and x- both satisfy 

X: = xi-T2-y,  T > 0,  (2.53) 

with initial conditions 
X + ( O )  = a, %+(O) = p, (2.54) 

X - ( O )  = a,  L ( 0 )  = -p. (2.55) 

The advantages of the transformation to x- for T < 0 is that now x- satisfies (2.46) 

For a fixed value of A# in the range, say, -2n < A# d 0, we have to find a and /3 

A+ = A- en', A# = #+ + #-. (2.56) 

In  practice, rather than fix A# and iterate, one fixes, say, p, and finds the value 
of a that satisfies the first of (2.56) and merely calculates A# as a function of p from 
the solutions. 

In this form the connection problem is seen to be independent of E .  After the values 
of a and p, which allow a solution of (2.561, have been found, the second condition 
of (2.51) is used to determine which value of E this solution corresponds to. The role 
of n appearing in (2.51) now becomes apparent. The phase functions #+ and #- are 
only defined modulo 271:. If they are chosen so that -271: < A# ,< 0 then for a given 
solution there will be a sequence of values s(n), n = 0, 1,  ... that monotonially 
decreases as n increases. Each succeeding value of E corresponds to a solution with 
an extra oscillation in the outer solution. 

but with (A+, #+) replaced by (A-, #-). 

that satisfy the two conditions 

3. Discussion of the solutions 
This is the case of zero damping, corresponding to inviscid flow. From (2.51) this 
requires A+ to be equal to A_.  We term this common value A. The solution of (2.53) 
is even if k(0) = 0 and this clearly gives a symmetric solution with A+ = A- = A .  
Thus the required solution is p = 0 with x+ = x-. This in fact proves to be the only 
set of solutions with A+ = A _ .  Hence we solve with p = 0 and simply compute A#(&) .  
In the (a ,  p) phase plane of initial conditions, the locus lies along the a-axis but is 
restricted to a- d a d a, where a-(y)  and a+(y) are functions of y .  Outside this 
interval no solutions of the type sought exist. Ockendon et al. (1986) and Byatt- 
Smith (1988) give numerical evidence to show that when y = - 1.466.. ., a- = a+ and 
as y increases the range a+ - a- increases and tends to infinity as y + + co . The graph 
of #+ = $A# is shown in figure 1 plotted as a function of the initial condition a, for 
the case y = 0. The phase #+ has a maximum and tends to - 00 as a --f a+ or a_. (Here 
of course we have taken A# to be defined continuously rather than restricted to 
values in the range -271: < # < 0.) Following (2.51) this means that for a given value 
of n there is a maximum value of E beyond which the solution fails to exist. The 
corresponding diagram for A ,  figure 2, shows that A has a minimum and tends to 00 
as a+a+ or a_. This is also shown in figure 3 where the allowable values of (A,, #+) 
are plotted as a curve parameterized by a ~ [ a - ,  a,] in the ( A ,  #)-plane. Although 
the process of constructing a solution breaks down if A becomes too large, the 
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8 -  

-0.6 

FIGURE 1. The graph of $+(a) for the symmetric solution when y = 0. In this diagram and all 
subsequent diagrams involving $ the variable $ has been scaled so that the plotted variable equals 
the variable in the text divided by 271 

I I I  I I I I I ,  I I I I I 1  I I I I I 
I 

-2.8 -2.4 -2.0 - 1.6 -1.2 -0.8 -0.4 0 0.4 0.8 
a 

FIGURE 2. The graph of A+(cr) for the symmetric solution when y = 0. 
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4 
FIGURE 3. The curve (A+, 9,) = r, for the symmetric solution when y = 0 plotted in the 

(A ,  $)-plane. 

limiting solutions for the inner problem when a = a+ and a = 01- can be shown to be 
those that tend to xo = JTJ as T --f f 00. Holmes (1982) proves that when y = 0 there 
is a unique solution of (2.44) with a = xo(0) = 01+ > 0 and a unique solution with 
a E xo(0) = a- < 0 that satisfies the requirement that xo - + IT1 as T + f 00. These are 
even solutions and represent the j = 0 or 1 'spikes ' in the solution at t = x (see $1). 
The graphs of these functions (for y = 0) are shown in Holmes (1982, figure 1) and 
Ockendon et al. (1986, figure 6). Byatt-Smith (1988) demonstrates numerically that 
there continue to be two and only two values of a that give solutions of (2.44) with 
xo - + IT[ provided y > - 1.466.. . , the value a t  which the two solutions merge, that 
is when a+ = a-. The convergence to the limiting inner solution as a+a+ from below 
or a- from above is only pointwise in T and not uniform for all T in [0, 00). The role 
of the limiting solution and the breakdown of the inner solution due to the non- 
uniform convergence is discussed in the next section. 

The limiting solutions have to be matched to an outer solution with Y: > 0. The 
analogue of (2.31) that is bounded in --x < t < x is 

@2-8C* cosh ( 7 - 1 / ( 2 ~ ) )  
y x + 4 2  cos$t+ 

cosi($) cosh (1 / (2s ) )  ' 

Again near t = +x we can obtain the asymptotic result 

and matching can be achieved provided the value of C* can be obtained from the 
inner solution. However the mathematical and numerical processes involved in the 
matching procedure are much more complicated in this case. This is because over 
most of the range of t  the second term in (3.1) is exponentially smaller than some of 
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FIGURE 4. The amplitude response curve for y = 0. 

those that arise from the higher-order terms in (2.21). Thus (3.1) represents the 
leading terms in the series (2.20) which are technically of order 1 and $', but the 
second term is actually only of order EP when 7 is O(1) or 7-1/(26) is O(1). This is of 
course not compatible with It1 - 7c of order 1. The higher-order terms fall into the same 
categories: either they are independent of 7, like Y: or they have exponential 
behaviour in 7 similar to that observed in Y;. Thus outside the ranges 7 = O f l )  and 
7-1/(2€) = O(1) these terms are smaller than any of the terms that are independent 
of r but grow exponentially rapidly as we approach these ranges of 7 which 
correspond to It1 -7c = O($).  This is reflected by the fact that the decay to  IT1 in the 
inner solution is algebraic, in contrast to (3.2). In  more detail the inner solution has 
an asymptotic behaviour, equation (3.3), which is analogous to (2.46). In  (3.3) x,*(T) 
is the particular function that corresponds to Zo(T) in (2.45) but now tends 
asymptotically to + IT1 as T-zf co, and differs from IT1 only algebraically. The 
analogue of (2.46) is then - 

xo = x,*(T) +r A+ exp ( -- 2$2Tg) a s T + + c o  
Tz 

(3.3) 

Since x,*(T) is not known in closed form the numerical computation of A+ is not 
straightforward. The matching condition that we wish to invoke is that the algebraic 
terms from x,*(T) will match the higher-order terms in (2.20) that are independent of 
7, while the exponential terms of (3.3) will match the terms that have exponential 
behaviour in 7. The first condition is automatically satisfied (that is 2 f d y  = (TI = 

x,*(T) to leading order) while the second condition determines C*. When y is 
13 FLM 193 
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FIGURE 5(a ,  6). For caption see facing page. 
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FIGURE 5.  (a )  The curve To when y = 1. The dotted curve represents the boundary D. ( b )  The curves 
r+ and r- for y = 1 when A = 3 ; again the dotted curve represents the boundary D. (c) The curves 
r+, r- for y = 1 ,  A = 3.5 and the boundary D. 

identically zero there are no algebraic terms in (2.45) and x,*(T) is identically equal 
to IT1 and the numerical computation of A+ is then considerably easier. 

Once (A(a) ,  $(a)) have been determined the second condition of (2.51) determines 
the value of e that this solution corresponds to. This is shown in figure 4 with A plotted 
as a function of e .  The value of $ is defined continuously along these curves and the 
value of n is determined by the condition that the maximum value of $ lies between 
0 and 2n. The curves shown are for values of n between 3 and 14. The curve 
corresponding to n = 2 has a maximum value of e > 1 while that corresponding to 
n = 1 tends to infinity. This is because the maximum value of $ is greater than n, so 
that A# = 2n a t  some point along the ( A ,  #)-curve of figure 3. It should be 
remembered however that the theory is only valid for small values of e .  The curves 
corresponding to  y = 1 are shown in figures 5 ( a )  and 6 (a) .  

In  any practical situation the quantity E is fixed and the quantity y is varied. The 
quantity c from which y is defined is simply the average 

a t  least for periodic solutions. The response diagram for equation (2.1) is shown in 
figure 7 with y plotted as a function of amplitude A+ for E = 0.1. The curves that are 
shown are n = 16(1)12. Each curve has a minimum value of y and a minimum value 
of A+. The minimum value of y decreases as n decreases and the curve corresponding 
to n = 12 has a minimum value a t  y % - 1.451, which is only just greater than the 

13.2 
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FIGURE 6(u-c). The amplitude response curves corresponding to figure 5(u-e). 

minimum value - 1.466.. . beyond which the bounded solutions cease to exist. This 
value of y is shown by the dotted line. 

For smaller values of n the values of (A+, $+) effectively satisfy the asymptotic 
result of equation (3.12) (see next section). For a fixed value of y we label the A, 
values as A+a. The corresponding values of $+n, if defined continuously, must 
increase by 7c as n increases by 1.  The alternative description is to define the two 
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values of # = #+no and # = in (0, 2x) that correspond to the given value of e. 
Then, regarding the (A, #)-diagram of figure 3 (or the appropriate one for the value 
of y chosen) as a cylinder with # = 0 and # = 2x identified, the A+(a), #+(a) curve 
winds repeatedly around the cylinder with A+(a) monotonically increasing. Then 

are the successive intersections of the curve with the lines 
4 = #+no and @ = @+,,+I. 

and 

Using (3.12) we may then obtain 

or 

For larger values of n, the minimum value of A+ becomes very small. Numerical 
evidence suggests that this minimum is exponentially small for large values of y. For 
these larger values of n, the response diagram has the familiar resonance horns that 
occur for forced second-order differential equations (see for example Hale & 
Rodriques 1977a, b ;  Holmes & Rand 1976 and Guambaudo 1985). These resonance 
horns branch off the A = 0 axis over relatively short intervals of the y-axis. 
Numerical evidence suggests that the centres of these intervals on the y-axis increase 
as ni, so that successive intervals on the y-axis where A is exponentially small have 
a width of order ni. 

This can be explained by looking at the behaviour of the (A+, #+) or r, curve for 
6 = 0, as y increases. A comparison between figures 3 and 5 ( a )  shows that ro has a 
maximum value of #+ which increases and a minimum value of A+ which decreases 
as y has increased from 0 to 1. This trend continues and for large values of y the curve 
has a very flat minimum with A+ x 0 over an interval of $+ values that is 
approximately R in width and that moves to the right with increasing y. At either 
end of this range of #+ values, for fixed values of y, the value of A+ increases very 
rapidly. 

To obtain the response curve for a fixed value of E ,  we examine the behaviour of 
r, as y is varied continuously. Through (2.51) and the relation #+ = $A# a given 
value of e defines a countable set of possible phases given by 

#+(n) = nx-1/(2~) ,  n = 0, 1 ,  2, ..., (3.6) 

where n is restricted to non-negative values by physical considerations. These phases 
are represented by uniformly spaced lines in the (A, #)-plane. From the general shape 
of ro (figures 3 and 5a) a t  a fixed value of y there exists an integer N(y) such that 
r, meets # = #+(n) a t  amplitudes Ai(y)  and A2,(y) for all n < N(y). Since r, moves 
to the right as y increases, N(y) increases with y. Thus there exists an increasing 
sequence yn such that N(y) increases by one as y increases through yn. At this value 
of y the maximum value of #+ on r, is # = #+(n). Thus Ai(y) and A2,(y) coalesce 
a t  y = yn and vary continuously as y increases beyond yn. Thus for each n the 
union of the two curves (Ai(y), y)  and (Ai(y), y )  forms a continuous curve in the 
(A, y)-plane, as shown in figure 7 ,  and whose general shape follows readily from 
the above considerations. 

The more conventi9nal response diagram is to plot c ,  or in this case y, against the 
detuning parameter A. The unperturbed value A, from (1.6) can be seen to be 

A, = 1% I': dt + 2xs2 = - 4 4 2  + 27~2,  (3.7) 
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A 

FIQURE 8. The y - A  response curve for E = 0.16 A = 1 .  The second dotted line is 
A = -2-8137 log(25~~' ) .  

and in the Appendix it is shown that 

i = A, + E: (2-qE) - $24  y log (2% E-"} + o(e"), (3.8) 

where I ( € )  is an integral evaluated numerically. 

be written as 
For the case of zero damping the connection problem is symmetric so that I ( € )  may 

I ( € )  = 2 (x,(T)+T) dt+2 (x0(T)+T+y/2T) d t + y  loga. 13.9) s: iaa 
Thus we may define a scaled detuning parameter 

so that 

2-a 
A = 2-iI(s) -- y log (2%e-2), 

i = A*+E:A+o(E:). 

3 
(3.10) 

(3.11) 

Figure 8 is then a graph of y ( A )  for E = 0.1. The second term of (3.10) for fixed E 

is just a multiple of y and is independent of the oscillatory perturbation. The first 
term, while being mathematically of smaller order, is actually larger a t  this value of 
e except for those parts of the curves that correspond to small values of A .  This is 
of course fairly common when log terms are involved. A comparison between figures 
7 and 8 shows that the effect of using A as the independent parameter is to open out 
the graphs at the larger values of y.  Since, in figure 7 ,  the two values of A+ on a curve 
for a given value of n at a fixed large value of y are very close, the difference that 
occurs in the corresponding A values can be attributed to the spike in the connection 
problem which leads to a lower value of J?, y dt. 

3.2. The breakdown of the inner solution 

Before discussing the damped case we look in more detail a t  the breakdown of the 
inner solution and the role of the n-spike solution. Byatt-Smith (1988) shows that 
any set of solutions to (2.44) that converge pointwise to x = +T as T --f + 03 has 
values (A+, (5,) that  satisfy #+ + - 00 and 

A!+k,q5+ = k,+yk,#; i+ ... a s # + + - a ,  (3.12) 
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where k, ,  k, and k, are constants independent of y. Byatt-Smith (1988) also shows 
that the first maximum of x (T)  in T > 0 occurs a t  a value of T that is of order l$+l. 
Now for sensible scaling problems the inner solution must have reached its 
asymptotic value on a timescale T that is no greater than O ( E - ~ ) .  Thus for small 
(order-one) values of $+ and $-, the role of the inner solution is to connect the outer 
solution across T = x (modulo 2x). However, as q5+ becomes larger the value where 
oscillations first start in the inner solution (for T > 0) becomes larger, so effectively 
the solution emerges from the inner layer along the curve xo = +2i~-fIY:(t)l and the 
oscillations start in the outer solution a t  a value o f t  such that It+nl is greater than 
O(ei). Hence as q5+ +- co the solution merges into the n-spike solution. 

Thus the construction of a uniformly valid solution then requires three parts: 
(i) an outer solution of the form (2.20) that has the asymptotic form (3.1) and is 
valid in -x < t < to and 27t-4, < t < x ;  (ii) an outer solution that satisfies (2.8) in 
to < t < 271 - t o  and also tends to the homoclinic orbit as t + to or 2x - to  ; and (iii) an 
inner solution with asymptotic form (3.3) valid through t = -x. This of course 
corresponds exactly with the construction of Ockendon et al. (1986). 

3.3. The case 6 > 0 
This is the case of non-zero damping. We now require an asymmetric solution of 
(2.53) with A+ = A- ens = AA-. The numerical study of Byatt-Smith (1988) shows 
that for y > - 1.466 ... there is a domain, D ( y )  in the ( A ,  $) plane such that for any 
point (A- ,  $ - ) € D ( y )  there exists a second point (A+,  # + ) € D ( y )  and a solution of 
(2.53) that connects the asymptotic form (2.47) with the asymptotic form (2.46). For 
fixed S (in addition to fixed y )  the first condition of (2.51) restricts solution pairs 
(A- ,  #-), (A+,  $+) to curves r- and r+ c D(y) .  Each point on these curves defines a 
value of E by means of the second condition of (2.51). For small values of 6 the two 
curves lie close to the single curve ro, corresponding to 6 = 0. (This curve, for 
y = 0 is shown in figure 3). The curve r+ lies inside ro, and r- lies outside and all 
three have the same asymptotic properties as A tends to infinity. (Compare for 
example figure 5a-c.) 

As 6 increases, the curves r- and r+ have two different types of behaviour. When 
y < 0 the curve r- expands and tends uniformly to the boundary D ( y )  while r+ 
contracts and tends to infinity, as S tends to infinity. This is because for any value 
of # the point (0, #) lies outside B(y ) ,  in the case y < 0, or possibly on D(y)  if 
y = 0. When y > 0 all points (0, 4) 0 d q5 < 2x lie within D ( y ) .  All of these points 
are connected via a solution of (2.53) to a unique point (A,(?), $s(y) ) .  Hence in the 
limit as 6 + co the #-axis belongs to the curve r- and the point (A,,  #s) belongs to the 
curve r+. 

This limiting behaviour is approached in the following manner. As 6 increases the 
curve C still expands, a t  least initially, until a t  a critical value of 6(y) the curve 
r- touches itself. This happens because C expands so that there are two points on 
r- with the same value of A whose $ values differ by 2n. As 6 increases beyond this 
critical value r- splits into two parts. One part expands and tends uniformly to the 
boundary B ( y )  while the other part tends uniformly to the axis A = 0. This latter 
part of the curve is closed if the points ( A ,  #) and ( A ,  q5 + 2x) are identified. The curve 
r+ still contracts but now splits into two parts a t  the same critical value of 6. One 
part tends to infinity while the other is a closed curve which contracts uniformly to 
the point (As,  q5J (see Byatt-Smith 1988 for further details). 

The consequence of this is that if we move continuously clockwise round the closed 
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loop of f ,  the value of #, returns to its original value while the corresponding value 
of #- has decreased by 2 x .  

Under this process A# = #, + #- decreases by a total of 2x with each complete 
execution of f , .  Alternatively, we can restrict A# to the interval -2x < A# < 0, in 
which case, by (2.51) A# is unchanged with each description o f f +  but n decreases by 
1. For each value of n, E can be calculated and an ( A ,  E )  response curve calculated as 
A# assumes all values in ( -  2 x ,  01. In  view of the continuous evolution of A# when 
not restricted to ( - 2x, 01 the ( A ,  E )  response curves for n and n + 1 blend continuously 
into one another so that the assignment of a value of n to a particular portion of the 
curve is somewhat imprecise. For y = 1 the critical value of d = ens lies between 3 
and 3.5 and the curves f , ,  for 6 = 0 ( A  = 1) and f -  and f ,  for A = 3 and A = 3.5 are 
shown in figures 5 ( a ) ,  5 ( b )  and 5 ( c )  respectively. The corresponding curves in the 
( A ,  E )  plane are plotted in figures 6 ( a ) ,  6 ( b )  and 6(c) .  In figures 6 ( a )  and 6 ( b )  the 
curves for different values of n are all disjoint but join a t  the critical value. In figure 
6(c )  we have one continuous family of solutions described above and also a disjoint 
set of curves. At either end of each of the disjoint parts of the curve the corresponding 
values of n effectively differ by one. 

The corresponding response diagrams y(A+)  and y ( A )  for A = 3.5 are shown in 
figures 9 and 10. The distinctive feature in comparison with figures 7 and 8 are that 
the resonance horns have disappeared. Whilst this is a common result of the inclusion 
of damping terms, some explanation is required in the light of figure 6 (c ) .  Although 
the drift to the right of the (A ,  #)-curve, as explained in $3.1 still occurs, that portion 
of f - ( y )  which tends to the A = 0 axis with increasing y ensures a continuous small- 
amplitude solution as y increases. However it is not immediately clear what has 
happened to the large-amplitude solution and how it can connect with the small- 
amplitude solution. 

The first part of the explanation lies in the fact that the minimum value of A+ on 
the large-amplitude portion of figure 6 ( c )  now increases with y .  This counteracts the 
tendency of the drift to the right in figure 5 ( c ) ,  resulting in a maximum value of E 
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FIGURE 10. The 7-A response curve for E = 0.1, A = 3.6. 

on each curve which decreases as y increases. The second part of the explanation is 
that as y decreases there is a critical value of y where figure 6(c) changes to figure 
6 ( b ) ,  thus allowing the large-amplitude solution to join smoothly with the 
continuation of the small-amplitude solution. 

4. Conclusion 
We have presented an asymptotic and numerical method for constructing a 

solution of (2.1) which describes the periodic sloshing in a shallow rectangular tank 
as E + 0, this limit being appropriate for the case when the water depth tends to zero. 
For a fixed but small value of e the response diagrams y ( A )  have been calculated 
numerically and plotted in figures 8 and 10, representing the cases of zero and non- 
zero damping respectively. Here y is given by ce-f 2: with 1 + c  being the mean- 
square disturbance, and the quantity A represents the scaled detuning parameter. 

The response diagram for zero damping (figure 8) suggests that for any fixed value 
of A there is an infinite number of possible solutions which can be labelled by (n, 0) 
or (n, l ) ,  n > N ( A )  with n being the number of spikes corresponding to rapid 
oscillation on the fast time-scale. As n tends to infinity then the values of y 
corresponding to the (n, 0) and (n, 1) solutions tend to infinity. However the 
amplitude of the associated oscillations remains of order eg corresponding to a 
solution of the connection problem with A of order one (see figure 7). As A decreases 
the two branches of the (n, 0) and (n,  1)  solutions for a fixed value of n merge a t  
A = A ,  to form a continuous curve. As A tends to infinity the values of y 
corresponding to (n, 0) and (n, 1) also tend to infinity. This is associated with an 
increase of A obtained from the connection problem. This means that as A increases 
(for fixed n) the amplitude of the associated oscillations increases so that the 
linearized approximation of (2.19) ceases to be valid. 

The corresponding response curve for the damped case, figure 10, shows that the 
(n, 1 )  and the (n+ 1 , O )  meet a t  a finite value A n  rather than both branches extending 
to infinity. Thus in the damped case there is only a finite number of solutions for a 
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fixed value A .  Both of these response diagrams complement those obtained by 
Ockendon et al. (1986) who do not treat the case with c small. 

Thus we have established the existence of a set of solutions for the periodic sloshing 
in a rectangular tank, which has been the purpose of this paper. In the case where 
multiple solutions exist we have not considered the problem of which solutions are 
preferred. This presumably requires knowledge of the stability of each solution and 
the domain of attraction in the space of initial conditions. 

The author wishes to thank his colleague A. D. Gilbert for helpful discussions and 
to J. R. Ockendon who drew the authors attention to this particular problem. 

Appendix. Calculation of the detuning parameter h 
From (3.7) A is defined as 

A = r n y d t .  

Since y(s, t )  has two different expansions we split the range of integration into two 
parts and define 

(A 2) 

and 

A2(p, E )  = y dt +r y dt = y dt, (A 3) 
-n "-f -"-p 

since y(e) is 2nperiodic. 
We assume p << 1 and can be chosen so that the expansion of (2.21) is valid in 

(A 2) and the expansion of (2.44) is valid in (A 3). The resulting expansions for A, and 
A, are not uniformly valid asp  and E tend independently to zero, but their sum, which 
is independent of p, will be. Hence a term for (A 2) that tends to infinity for fixed s 
as p + 0 must be cancelled by an appropriate term from (A 3). 

Introducing the scaling of (2.42) into (A 3) we have 

A 2 -  - 2-;dSfhx(T) dT. 

The upper limit R is given by the expression 

(A 5 )  
1 2  R = 2 - ~ e - ~ p ,  

which is assumed to be 9 1 (so that p b E;) .  

The integrals of all of the oscillating terms of (2.46) converge as R-t  co. The only 
terms that produce divergent integrals are the leading term, -T, and the term 
-y/2T coming from z0(T). This latter term is the one that has been seen to arise 
from the expansion of (1 + cost + c$. 

Guided by these terms we now define 

(x,(T)+T)dT+ylogR 
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This integral now converges as R --f co and we write 

I ( € )  = lim I (R,  E )  = 

From (2.46) we find that 

(xO+T)  d T + / a m + r  (xo+T+&) d T + y  loga. (A 7)  
R+CC la -m 

~ ( e )  - I (R,  e) = o(R-~)  = ~ ( e i p - f )  as R + co (A 8) 

provided p 9 el. 
Then 

A, = 2-i&{I(~)-R’-y logR+O(R-~)}+o(d) 
1 4  1 4  = 2 - -  “E”{I(E)-2-3€-3pz-y - log2-~€ ’p+O(€~p- f ) }+0 (€+)  

= 2-eeaI(e) 1 4  -2-+2-aeay 1 4  log (2-ie-ip) + o(e:p-a) +o(6+). 
(A 9 )  

Before calculating A, we first notice that the O(ei)-term in the outer solution listed 
in (2.31) gives rise to an integral of order eyp-f which, by the remark following 
(A 3), is to cancel the corresponding term in (A 9). The next term in the expansion 
is of order e+ and we may write 

+ o(e+)} dt 
- n i p  2: cos it 

1 4  
= - 4 4 2  c o s ~ - 2 - ~ y e ~  log{cosec~p+cot$ppf+o(e~) 

= - 4 4 2  + $ 4 2 ~ ~  + . . . + 2-i ye+ log ($) (1  + . . . ) + ~ ( e g ) .  (A 10) 
Adding (A 9) and (A 10) we obtain 
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